
LLNL-CONF-407542

Building Ultra-Low False Alarm Rate
Support Vector Classifier Ensembles
Using Random Subspaces

B. Y. Chen, T. D. Lemmond, W. G. Hanley

October 7, 2008

2009 Symposium on Computational Intelligence and Data
Mining
Nashville, TN, United States
March 30, 2009 through April 2, 2009



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



 
 

 

  

Abstract — This paper presents the Cost-Sensitive Random 
Subspace Support Vector Classifier (CS-RS-SVC), a new 
learning algorithm that combines random subspace sampling 
and bagging with Cost-Sensitive Support Vector Classifiers to 
more effectively address detection applications burdened by 
unequal misclassification requirements. When compared to its 
conventional, non-cost-sensitive counterpart on a two–class 
signal detection application, random subspace sampling is 
shown to very effectively leverage the additional flexibility 
offered by the Cost-Sensitive Support Vector Classifier, 
yielding a more than four-fold increase in the detection rate at 
a false alarm rate (FAR) of zero. Moreover, the CS-RS-SVC is 
shown to be fairly robust to constraints on the feature subspace 
dimensionality, enabling reductions in computation time of up 
to 82% with minimal performance degradation. 

I. INTRODUCTION 
n many two-class detection applications of practical 
significance, the two types of classification error, missed 

detections and false alarms, are associated with inherently 
unequal costs. Whether these costs are tangible (e.g., loss of 
money, life or time), or intangible (e.g., loss of security or 
opportunity), they generally impose explicit requirements 
that must be effectively addressed via appropriate models 
and methodologies. This paper introduces a novel 
classification methodology called the Cost-Sensitive Random 
Subspace Support Vector Classifier (CS-RS-SVC) that has 
been developed specifically to address these types of 
applications. 

The CS-RS-SVC is an ensemble-based methodology that 
utilizes the Cost-Sensitive Support Vector Classifier (CS-
SVC) [1, 2] as its base classifier. Conventional (i.e., non-
cost-sensitive) SVCs, like many other classifiers, 
automatically learn decision boundaries in feature space that 
separate two classes of interest and minimize the overall 
error. In this paradigm, cost-sensitivity is often emulated by 
selecting a decision threshold such that a specified error 
bound is not exceeded, effectively translating the boundary 
in feature space. Not surprisingly, translation of the decision 
boundary often results in an unacceptable increase in the less 
egregious error type. Cost-sensitive classifiers, such as the 
CS-SVC, cost-sensitive Multi-layer Perceptrons [3], and 
cost-sensitive decision trees [4], on the other hand, 
transform this boundary to optimally account for unequal 
error costs.  

Standalone classifiers such as those described above can 
be greatly enhanced by learning numerous instances of each 
and combining their decisions. These multi-classifier 
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systems, or classifier ensembles, almost always achieve 
performance superior to that of their individual components. 
One of the most effective of these leverages the concept of 
Bootstrap Aggregation (i.e., bagging) [5], in which each 
base classifier is trained on a bootstrapped sample of the 
original training set. The overall ensemble class decision is 
determined by voting the base classifier decisions. Valentini 
and Dietterich demonstrated the effectiveness of bagging 
low-bias SVCs in [6]. 

A further enhancement to the bagging approach is the 
Random Subspace methodology developed by Ho [7], which 
introduces additional diversity via random sampling with 
replacement of the feature subspaces. The Random Subspace 
method (i.e., bagging + random feature subspace sampling) 
forms the basis for the highly effective classifier formalized 
by Breiman called the Random Forest [8]. 

The new CS-RS-SVC methodology presented in this 
paper leverages both of these ensemble enhancements, but in 
contrast to the cost-sensitive ensembles developed in [9, 10, 
and 11], it derives its cost-sensitivity strictly from CS-SVC 
base classifiers. This research demonstrates, via a two-class 
detection problem, that the CS-RS-SVC achieves 
significantly higher detection rates at lower false alarm rates 
than comparable non-cost-sensitive systems. The paper is 
organized as follows:  Sections II and III will introduce the 
conventional and cost-sensitive SVCs, respectively, and 
Section IV will provide a detailed description of the CS-RS-
SVC learning algorithm. In Section V, we will compare the 
detection performance of the CS-RS-SVC to conventional 
SVC ensembles when applied to a two-class signal detection 
problem with high-cost false alarms. Our conclusions are 
summarized in Section VI. 

II. CONVENTIONAL SUPPORT VECTOR CLASSIFIER  

A. Overview 
A Support Vector Classifier (SVC) (a.k.a. Support Vector 

Machine) [12, 13, 14] is a classification algorithm that 
combines two powerful methods - the maximal margin 
classifier and the kernel trick. A maximal margin classifier is 
the hyperplane that best separates two classes of data while 
maximizing the distance between the hyperplane and each 
data sample. This hyperplane can be determined via 
optimization of an equation that can be expressed as an inner 
product between pairs of training samples. These inner 
products, through substitution of kernel functions in the 
optimization equations (i.e., “the kernel trick”), are 
computed in a much higher dimensional feature space, 
resulting in nonlinear maximal margin hypercurves.  

More formally, given a set of training samples (xi, yi), i = 
1, …, m where 

! 

x
i
" # n  and 

! 

yi " {#1,+1} , the goal is to 
determine the hyperplane defined by the coefficients 

Building Ultra-Low False Alarm Rate Support Vector Classifier 
Ensembles Using Random Subspaces 

Barry Y. Chen, Tracy D. Lemmond, and William G. Hanley 

I 



 
 

 

! 

w " # nand a scalar bias, b, that optimizes the following 
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where 

! 

"  is a user-specified regularization term that controls 
the curviness of the resulting hypercurve, 

! 

k(x i ,x j ) is the 

kernel function 

! 

k(x i ,x j ) " #(x i ),#(x j ) , and 

! 

"(#) is a 
mapping from input space to a potentially infinite feature 
space that encourages greater class separability. In the 
experiments presented in Section V, we use Gaussian kernel 
functions given by: 
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where 

! 

"  is the user-specified kernel width parameter that 
controls the sharpness of the resulting hypercurve. 

Because the two classes are generally not completely 
separable, (1) contains an error penalization term given by 
the average 

! 

"
i
, a slack variable that measures the distance 

from the separating hyperplane to a wrongly classified xi. 
Note that this penalization term makes no distinction 
between error types. In Section III, we will discuss 
enhancements that leverage these slack variables to create 
the Cost-Sensitive SVC. 

B. SVC Parameter Selection 
Successfully applying an SVC to a particular problem of 

interest depends heavily upon the selection of its training 
parameters. For the conventional SVC with a Gaussian 
kernel, this involves selecting 

! 

"  and 

! 

"  so as to optimize a 
desired performance metric. Our preferred metric is based 
upon the Receiver Operating Characteristic (ROC) curve 
[15], which plots detection rates against a range of false 
alarm rates (FAR), providing a natural means for visualizing 
the tradeoffs between the two error types. The detection 
application on which we focus our attention (i.e., the 
“Hidden Signal Detection” application described in Section 
V), like many other real-world problems, requires extremely 
low false alarm rates. In order to more effectively assess 
performance in these extreme regions, we use the summary 
metric given by the area under the ROC curve (AUC) [15].  
From a practical standpoint, the AUC over a false alarm 
interval of interest provides a measure of how well the 
classifier discriminates between two classes within the 
corresponding region.  For SVC parameter optimization, we 
utilize the AUC over the FAR interval [0, 10-3], which we 

denote AUC10-3. 
The brute-force methodology for optimal parameter 

selection with respect to the AUC10-3 requires successive 
grid searches of increasing resolution over all feasible SVC 
parameters and selecting those that yield the highest 5-fold 
AUC10-3 estimate (i.e., an unbiased estimate of AUC10-3 via 
n-fold cross-validation [16]). Computationally, this is quite 
costly, as each grid point necessitates the training and testing 
of five SVCs. To reduce the computational complexity, we 
employ the Nelder-Mead (Simplex or Amoeba) optimization 
algorithm [17]. In our experience, the Nelder-Mead 
algorithm reduces the number of grid points that require 
processing by up to a factor of ten and converges to the same 
parameter settings. However, one can trade off optimality 
for speed, if necessary, by setting a higher tolerance for 
convergence of the algorithm. 

III. COST-SENSITIVE SUPPORT VECTOR CLASSIFIER 
Unlike the conventional SVC, the Cost-Sensitive Support 

Vector Classifier is designed to perform more effective 
classification under unequal error conditions. Originally 
developed by Chew, et. al. [1], and later re-parameterized by 
Davenport, et. al. [2], the CS-SVC allows the user to specify 
unequal penalties for false alarms and missed detections. 
The CS-SVC maximal margin optimization equation as 
defined in [1] is given by (3). 
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Note that the fundamental distinction between the SVC 

optimization equations given by (1) and those of the CS-
SVC lies exclusively in the treatment of the slack variable 
penalty term, which has been split into two separate 
weighted sums: one for errors on the positive samples and 
another for negative samples. Thus, by setting 

! 

"  to a value 
other than 0.5, the penalties for false alarms and missed 
detections can be given unequal weighting. In the CS-SVC 
parameterization, the user is responsible for specifying the 
training parameters 

! 

"  and 

! 

" , along with any kernel 
parameters (e.g., 

! 

"  for the Gaussian kernel). An equivalent 
re-parameterization of the CS-SVC is described in [2] that 
replaces 

! 

"  and 

! 

"  with 

! 

"+  and 

! 

"# , which are shown to be 
the respective upper bounds on the positive and negative 
class margins for the training set. For example, when 

! 

"#  < 

! 

"+ , the optimization procedure results in maximal margin 
hypercurves that preferentially minimize the false alarm rate. 
It is this flexibility that often enables CS-SVCs to 
outperform conventional SVCs at ultra-low false alarm or 
missed detection rates.  



 
 

 

IV. SVC ENSEMBLES WITH BAGGING AND RANDOM 
SUBSPACE SAMPLING 

Inspired by the work of Ho [7] and Breiman [8] whose 
ensemble classifier learning algorithms combine bagging 
with the random sampling of feature subspaces, we 
developed similar ensemble systems incorporating the CS-
SVC as the base classifier (CS-RS-SVC) and contrasted 
these with conventional SVC ensembles (RS-SVC). Fig. 1 
shows the pseudo-code for training either RS-SVC or CS-
RS-SVC systems with N base classifiers on a data set D of 
size m.   

The algorithm consists of two phases.  Since each base 
classifier will be trained on a (not necessarily unique) 
subspace of the feature set, the first phase involves pre-
computing the optimal training parameters for each of the 
subspaces included in what we call the feature subspace 
sampling pool (fss_pool). Often, a user may choose to 
populate this pool with all possible feature combinations 
(i.e., 2F-1 subsets of F features).  However, when 
computational efficiency is a significant concern, the 
member subspaces may be dimensionally constrained, a 
modification whose strengths and weaknesses are discussed 
in detail in Subsection V-D.  

In the second phase of the algorithm, each base classifier 
in the ensemble is trained on a bootstrapped training set and 
a feature subspace randomly sampled from the feature 
subspace sampling pool. Each sample in the bootstrapped 
training set is projected onto the selected feature subspace, 
and this projected training set, along with the optimal 
subspace parameters, is used to train the corresponding base 
classifier. Like typical bagged ensemble classifiers, the 
resulting ensemble produces a class prediction for a new test 
sample via voting of the individual base classifiers’ 
decisions. 

It is imperative to recognize that the parameter estimates 
computed in the first stage of the algorithm are necessarily 
optimized for the entire training set. Consequently, they are 
at best loosely optimal for the bootstrapped data sets used to 
train the base classifiers in the second stage. An alternative 
implementation of the RS-SVC and CS-RS-SVC algorithms 
involves computing the optimal parameters on the fly for 
each of the bootstrapped training sets. This approach would 
yield better parameter estimates and would prove to be 
computationally more efficient when the number of feature 
subspaces is large relative to the ensemble size. However, 
the appropriate choice is highly dependent upon the 
application and its efficiency requirements. In the Hidden 
Signal Detection application presented in the following 
section, the ensemble size greatly exceeded the cardinality of 
the feature subspace sampling pool, motivating our choice to 
pre-compute the SVC and CS-SVC parameters. 

 

 

V. COMPARING CLASSIFIERS ON THE HIDDEN SIGNAL 
DETECTION APPLICATION 

The Hidden Signal Detection application is a two-class 
problem whose goal is to detect an embedded signal in a 
data sample. We computed a total of eight real-valued 
features useful for detecting the presence of an embedded 
signal, each of which was normalized by subtracting its 
mean and dividing by its standard deviation. For this 
application, a detection rate greater than 50% is desired, but 
since each detection event requires a considerable amount of 
costly post-hoc analysis, false alarms must be minimized.  

The Hidden Signal dataset consists of a training set and a 
separate test set. The training set consists of 7,931 clean 
samples (negative class) and 7,869 samples with an 
embedded signal (positive class). The test set contains 9,426 
positive and 179,528 negative samples, a class size which 
allows us to evaluate classifier performance at the desired 
ultra-low false alarm rates (i.e., nonzero FAR values as low 
as 5.57x10−6).  

All of the ensembles in the following experiments consist 
of 500 base classifiers, a size empirically determined to be 
sufficient for performance to plateau. In each case, we 
determined the optimal parameter settings using a 
convergence tolerance of 1% and setting the maximum 
number of simplex iterations to 50. The initial parameters 
we used for the SVCs were 

! 

"  = 0.1 and 

! 

"  = 1, with step 
sizes of 0.075 and 0.5, respectively. Similarly, the initial 
parameters used for the CS-SVCs were 

! 

"+  = 

! 

"#  = 0.1 and 

! 

"  = 1, with step sizes of 0.075, 0.075, and 0.5, respectively. 
For all of our experiments, we modified and leveraged the 

LIBSVM software package [18] for the training and testing 
of SVCs. Our modified LIBSVM contains a wrapper 
function to implement the Nelder-Mead optimization of 
SVC training parameters as well as the CS-SVC 
modifications specified by [2]. 

In the following discussions of performance, we will 
present our results in a form that allows us to thoroughly 
examine detection rates over the low false alarm regions of 
interest. Hence, the FAR axis of the ROC curves are plotted 

(Phase I) Compute_Optimal_Parameters: 
foreach  subspacei in fss_pool 
  Di’← project(D, subspacei) 

OptParsi←optimize_SVC_params(Di’) 
end 
 
(Phase II) Train_Ensemble: 
for i=1 to N 

Di←sampleWithReplacement(D, m) 
subspacei←sampleOne(fss_pool) 
Di’←project(Di, subspacei) 
SVCBaseClassiferi ←TrainSVC(Di’,OptParsi) 

end 
 
Fig. 1 – Pseudo-code for training RS-SVC and CS-RS-SVC ensembles. 



 
 

 

on a log scale, and in some cases we have clipped the region 
to enable more detailed visualization. In an effort to assess 
the statistical significance of our ensemble performance, we 
trained and tested eleven ensembles for each methodology, 
varying only the seed of the random number generator. For 
each performance metric, we then computed the median 
value along with the 10th and 90th percentiles for each point 
on the curve in a manner consistent with the “vertical 
averaging” approach described in [15].  

A. Conventional SVC Ensembles 
We begin our performance analysis by demonstrating the 

respective advantages of the bagging and Random Subspace 
ensemble methodologies in the low false alarm regions of 
interest. Specifically, we wish to compare the performance 
of these ensemble classifiers to that of a singleton SVC. 
ROC curves indicating the performance on the test set for all 
three of these methods are shown in Fig. 2.  

It is immediately apparent from Fig. 2 that for FARs less 
than 5x10−4, the Random Subspace method appears to yield 
significantly higher detection rates than both the singleton 
SVC and the bagged ensemble.  This is a trend that we will 
observe repeatedly throughout this discussion. The 
fundamental reason for this behavior is related to the greater 
diversity among the base classifiers that is afforded via 
feature subspace sampling, a characteristic that is discussed 
at length in [8], and one that we will briefly explore in the 
next subsection.  The ensemble that was created via bagging 
alone also appears to significantly improve upon the 
singleton classifier, increasing the detection rate by up to 20 
percentage points.  However, this improvement is far less 
pronounced than that of the more diverse Random Subspace 
ensemble.       

Note that the distance between the percentile bands for 
each of the ensemble classifiers clearly reflects its base 
classifier diversity. That of the bagged ensemble is 
extremely narrow (almost invisible upon visual inspection), 
indicating very little performance variability over the eleven 
runs.  Hence, it is not surprising to see that its performance 
trend (i.e., the shape of the ROC curve) strongly resembles 
that of the singleton SVC. 

Although the Random Subspace method appears to be less 
effective at higher false alarm rates, it clearly achieves our 
cost-sensitivity requirements over the more extreme regions.  
Its detection rate at the lowest nonzero FAR exceeded that of 
the other classifiers by a factor of more than five.  
Additionally, it is the only classifier to achieve a nonzero 
detection rate (i.e., 9.4% - not shown) at a FAR of zero.  

In keeping with our discussion of the AUC in Section II, 
we also compared the classification performance of these 
classifiers via the normalized AUC over the ultra-low FAR 
intervals [0,10−5], [0,10−4] and [0,10−3]. Box and whisker 
plots (Fig. 3) show the 25th, 50th, and 75th percentiles (box) 
along with the smallest and largest non-outlier AUCs 
(whiskers) over each of these ranges. The separation of these 
boxes over all of the regions provides further evidence that 
the RS-SVC achieves superior performance at low FARs.  

 
Fig. 2 – ROC curves of conventional SVC singleton, bagging, and Random 
Subspace systems. 
 

 
Fig. 3 – Box plots of AUC computed over the FAR range [0.0, ending FAR] 
for conventional SVC systems. 
 

In most practical applications, we are not only interested 
in quantifying the error rates, but also the expected cost 
incurred by a classification system.  This metric is given by  
 

  

! 

EC = p(+) " (1# DR ) " c(miss)+ p(-) "FAR " c( falsealarm)   (4) 
 

where DR is the detection rate, p(·) is the prior probability 
for each class, and c(·) is the cost for each type of error. To 
enable visualization of this metric, Drummond and Holte 
developed “cost curves” that express expected cost as a 
function of the class priors and costs [19]. Specifically, cost 
curves plot the expected cost (normalized by its maximum 
value) versus the probability cost function (PCF), which is 
given by: 

 

! 

PCF =
p(+) " c(miss)

p(+) " c(miss)+ p(#) " c( falsealarm)
.    (5) 

 
Assuming equal priors, PCF is small when the cost for false 
alarms is large relative to that of missed detections. In the 



 
 

 

Hidden Signal Detection application, the cost of a false 
alarm is considered to be at least 100 times more costly than 
a missed detection, making classifiers whose cost curves are 
lower for PCF < 0.01 more desirable. Fig. 4 shows cost 
curves for the conventional singleton, bagged, and Random 
Subspace classifiers. The bagged and Random Subspace 
ensembles appear to attain significantly lower expected costs 
than the singleton SVC over the range of interest. For values 
of the PCF < 0.005, the Random Subspace classifier is 
heavily favored. 
 

 
Fig. 4 – Cost curves of conventional SVC systems focused on PCF regions 
where false alarms are more than one hundred times more costly. 

 

B. Cost-Sensitive SVC Systems 
Having established the advantages of bagging and feature 

subspace sampling in conventional SVC ensembles, we wish 
to demonstrate the additional gains afforded by our cost-
sensitive variants of these methods. We repeated the 
experiments in the previous subsection utilizing the Cost-
Sensitive SVCs, as described in Section III, as the base 
classifiers for the ensembles. The ROC curves for these cost-
sensitive systems are shown in Fig. 5. Like the conventional 
bagged ensemble, the cost-sensitive variant significantly 
outperforms its corresponding singleton, and their ROC 
curves are similar in shape. Unlike our previous experiment, 
however, the cost-sensitive Random Subspace ensemble 
does not significantly underperform the other classifiers at 
any FAR. In fact, at 5.57x10−6 FAR, the median detection 
rate for the CS-RS-SVC is more than six times that of the 
other classifiers, and at a FAR of zero, it attains a 38.8% 
median detection rate (not shown) as compared to zero for 
both the bagged and singleton CS-SVCs. 

The AUC box and whisker plots in Fig. 6 indicate similar 
behavior as in the conventional case, but the advantage 
enjoyed by the CS-RS-SVC is far more pronounced, with 
relatively high AUCs even across the lowest FAR region. 

Additionally, the cost curves for the cost-sensitive 
classifiers, shown in Fig. 7, suggest significant reductions in 
expected cost in the low PCF region of interest when 

 
Fig. 5 – ROC curves of cost-sensitive SVC singleton, bagging, and Random 
Subspace systems. 
 

 
Fig. 6 – Box plots of AUC computed over the FAR range [0.0, ending FAR] 
for cost-sensitive SVC systems. 
 

progressing from singleton to bagging, and an even more 
significant reduction when Random Subspace Sampling is 
employed.  

Interestingly, a comparison of these results to those in the 
prior subsection suggests that the performance gain due to 
Random Subspace Sampling versus that due to bagging 
alone appears to be much more pronounced for the cost-
sensitive classifier variants.  This observation strongly 
suggests that the Random Subspace ensemble is able to 
leverage the flexibility of the CS-SVC far more effectively 
than bagging alone. Specifically, the cost-sensitivity of the 
base classifiers appears to combine synergistically with the 
multi-dimensional slices through feature space to amplify 
ensemble classification performance. 

We know from [8] that ensemble performance is 
enhanced by both higher strength (i.e., accuracy) and lower 
correlation of its base classifiers. Figures 3 and 6 indicate 
that, for this data set, the strengths of the standalone 
conventional and cost-sensitive SVCs are roughly 
equivalent. However, because the CS-SVC incorporates an 



 
 

 

additional parameter, it is a more flexible model than the 
standard SVC, and hence, is capable of achieving greater 
variability. A reasonable conjecture, then, is that the 
observed amplified performance is at least partially derived 
from reduced correlation among the CS-SVC base classifiers 
under feature subspace sampling. In fact, 

! 

" 
CostSens

= .403  and 

! 

" 
Conv.

= .427 , computed according to [8].  
Though the above argument is reasonable, we suspect that 

the underlying cause for this phenomenon is nontrivial and 
arises from multiple factors that depend upon both the 
models and the data.  Further study would be necessary to 
fully investigate these interactions. 

 

 
Fig. 7 – Cost curves of cost-sensitive SVC systems focused on PCF regions 
where false alarms are more than one hundred times more costly. 

C. Conventional Versus Cost-Sensitive Random Subspace 
Systems 
In the prior subsections, we have explored the effect of 

each ensemble methodology on classifier performance, and 
found that the Random Subspace approach yields the 
greatest benefits.  In this subsection, we contrast the 
performance of these classifiers with respect to the cost-
sensitivity of their base SVC methodology.  The ROC 
curves plotted in Fig. 8 clearly show that the median 
detection performance of the CS-RS-SVC exceeds that of 
the RS-SVC over the entire FAR range. Furthermore, for 
FARs within the interval [5x10−5, 8x10−2] their respective 
percentile bands do not overlap, providing strong evidence 
that CS-RS-SVC significantly outperforms the RS-SVC over 
this region. Although the percentile bands do overlap for 
FARs < 5x10−5, the CS-RS-SVC still appears to maintain a 
slight advantage. It is interesting to note that the CS-RS-
SVC percentile bands are even narrower than those of its 
conventional counterpart, suggesting greater performance 
stability in low FAR regions. 

A comparison of the AUC box and whisker plots for these 
ensembles, shown in Fig. 9, further supports the behaviors 
observed in Fig. 8. The CS-RS-SVC appears to achieve 
significantly higher detection performance for FAR values 
up to 10−4. In the most extreme FAR region, the interquartile  

 
Fig. 8 – ROC curves of conventional (RS-SVC) and cost-sensitive Random 
Subspace (CS-RS-SVC) classifiers. 
 
 

 
Fig. 9 – Box plots of AUC computed over the FAR range [0.0, ending FAR] 
for cost-sensitive SVC systems. 
 

 
Fig. 10 – Cost curves of conventional (RS-SVC) and cost-sensitive Random 
Subspace (CS-RS-SVC) systems focused on the low PCF region of interest. 
 



 
 

 

ranges of their AUCs overlap slightly, but the median AUC 
of the CS-RS-SVC still lies above the interquartile range of 
the RS-SVC’s AUC, providing further evidence, albeit 
weaker, that the CS-RS-SVC is more effective than the RS-
SVC. Finally, Fig. 10 suggests that the CS-RS-SVC incurs 
significantly lower expected cost than the RS-SVC over the 
PCF region of interest where false alarms are at least 100 
times more costly than missed detections. 

Again, the CS-RS-SVC’s percentile bands are much 
tighter than those of the RS-SVC, indicating greater 
performance stability and reliability of the detection system 
in practical applications. 

D. Constraining Subspace Dimensionality for Random 
Subspace Systems 
In Section IV, we encountered the issue of computational 

complexity and proposed the possible use of constrained 
dimensionality. Specifically, we wish to explore the effects 
of constraining the feature subspaces in the sampling pool to 
only those of dimensionality d, as compared to 
unconstrained sampling over all feature subspaces. Fig. 11 
shows ROC curves for RS-SVC systems with feature 
subspaces constrained to dimensionalities d = 1, 2, and 3, 
along with the RS-SVC using unconstrained sampling. The 
performance increases dramatically from d = 1 to d = 2, 
where it appears to achieve its peak. For d = 3, the 
performance degrades and continues to decline for d > 3 (not 
shown, to preserve clarity). When compared to the 
unconstrained RS-SVC, the d = 2 case appears to enjoy a 
slight advantage, and also has tighter percentile bands. A 
similar plot for the CS-RS-SVC (Fig. 12) indicates that d = 2 
is at least as effective as the unconstrained ensemble. 

To investigate the mechanisms underlying this 
phenomenon, we revisited the concepts of base classifier 
strength and correlation. Specifically, [8] shows that higher 
strength and lower correlation among base classifiers yield 
better ensemble performance. Since our application demands 
low false alarm rates, we plotted these metrics as a function 
of dimension for each ensemble with respect to the negative 
class to gain greater insight into their behavior (Fig. 13).   

Note that, in general, the CS-RS-SVC consists of stronger 
and more diverse (i.e., less correlated) base classifiers than 
the RS-SVC with respect to the negative class.  In each case, 
the strength is extremely poor at d = 1 and rises dramatically 
at d = 2, overwhelming the change in correlation and leading 
to a tremendous performance gain.  However, as d continues 
to increase, the rate of correlation change for the RS-SVC 
exceeds that of strength, negatively impacting performance 
at higher dimensions.  In contrast, the CS-RS-SVC 
maintains roughly the same rate of change in both strength 
and correlation as d increases from 2 to 3, yielding 
statistically similar performance for these dimensions. These 
observations are consistent with the ROC curves in Figs. 11 
and 12. Remarkably, at d = 8, where the ensembles are 
identical to bagging alone, the correlation among the CS-RS-
SVC base classifiers with respect to the negative class 
remains dramatically lower than that of the RS-SVC. At first  

 
Fig. 11 – ROC curves of conventional Random Subspace ensembles with 
unconstrained and dimensionality-constrained feature subspaces.  
 

 
Fig. 12 – ROC curves of cost-sensitive Random Subspace ensembles with 
unconstrained and dimensionality-constrained feature subspaces.  
 

 
Fig. 13 – Strength and correlation of the base classifiers on negative 
samples for RS-SVC and CS-RS-SVC versus dimension constraint, d.  
 

glance, this appears to contradict our findings of Subsection  

V-B that bagged ensembles are not greatly enhanced when 
their base classifiers are made cost-sensitive. To clarify this 
result, we computed the correlation and strength values at d 
= 8 over both classes for each ensemble classifier. These 
values were found to be nearly identical (i.e., 
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their similar performance. 
Ultimately, Fig. 13 supports our assertion that 

constraining the feature subspace dimensionality to d = 2 
does not significantly degrade performance for this 
application. Utilizing this strategy reduces the number of 
possible feature subspaces from 255 to 28, yielding 
considerable gains in efficiency during parameter 
optimization. Table 1 shows the training times for each stage 
of the two algorithms. By constraining the feature subspaces, 
the total training time can be reduced by over 82%. 
 

 

VI. CONCLUSION 
We have compared the performance of conventional and 

cost-sensitive Support Vector Classifiers (SVCs) in 
singleton as well as ensemble detection systems applied to a 
real-world detection application that requires nonzero 
detection probabilities at ultra-low false alarm rates. 
Empirical evidence has shown that while bagging enhances 
the performance of singleton (conventional) SVC systems, 
the Random Subspace method provides significantly 
enhanced gains in detection rate over low FAR regions. The 
effectiveness of this method can be attributed largely to the 
base classifier diversity resulting from random sampling of 
both training data as well as feature subspaces. 

The CS-SVC incorporates an additional parameter that 
enables optimization of detection performance at ultra-low 
false alarm rates. While bagging of CS-SVCs did not 
perform significantly better than bagging of conventional 
SVCs, the Random Subspace method did yield a significant 
gain in performance over low FAR intervals when its base 
classifiers were made cost-sensitive. This methodology 
appeared to more effectively leverage the additional 
flexibility of CS-SVCs than bagging alone. 

The cost-sensitive CS-RS-SVC outperformed the 
conventional RS-SVC in terms of both detection rate and 
expected cost across ultra-low false alarm regions. Of even 
greater significance was its increase in detection rate at a 
FAR of zero by a factor of more than four.   

Though the parameter optimization procedures are quite 
expensive for the CS-RS-SVC, we found that restricting the 
pool of feature subspaces to dimension d = 2 reduces the 
number of SVC parameter optimizations by 89% and overall 
training time by 82% without sacrificing performance.  This 
result was further supported by an examination of base 
classifier strength and correlation over the negative class.  It 
is important to note, however, that the optimal value of d is 

likely data dependent, and may rely at least partially upon 
the presence or absence of correlation among the various 
feature combinations.  

ACKNOWLEDGMENT 
The authors are grateful to David Knapp, John Buyer, 

Larry Hiller, and Marshall Mugge for providing the Hidden 
Signal dataset and features. 

REFERENCES 
[1] H. G. Chew, R. E. Bogner, and C. C. Lim, “Dual-ν support vector 

machine with error rate and training size biasing,” in Proc. 
International Conference on Acoustics, Speech, and Signal 
Processing, pp. 1269–1272, 2001. 

[2] M. A. Davenport, R. G. Baraniuk, and C. D. Scott, “Controlling false 
alarms with support vector machines,” in Proc. International 
Conference on Acoustics, Speech, and Signal Processing, Toulouse, 
France, 2006. 

[3] B. Y. Chen, T. L. Hickling, M. Krnjajić, W. G. Hanley, G. Clark, J. 
Nitao, D. Knapp, L. Hiller, and M. Mugge “Multi-Layer Perceptrons 
and Support Vector Machines for Detection Problems with Low False 
Alarm Requirements: an Eight-Month Progress Report,” LLNL, 
UCRL-TR-227939, February 2007. 

[4] C. Elkan,  “The Foundations of Cost-Sensitive Learning,” in Proc. of 
the Seventeenth International Joint Conference on Artificial 
Intelligence, pp. 973-978, 2001. 

[5] L. Breiman, “Bagging predictors,” Machine Learning, Vol. 24, No. 2, 
1996. 

[6] G. Valentini, T. G. Dietterich, “Bias-variance analysis of Support 
Vector Machines for the development of SVM-based ensemble 
methods,” Journal of Machine Learning Research, 5, pp. 725-775, 
2004.  

[7] T. K. Ho, “The Random Subspace Method for Constructing Decision 
Forests,” IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Vol. 20, No. 8, pp. 832-844, August 1998. 

[8] L. Breiman, “Random Forests,” Machine Learning, Vol. 45, No. 1, pp. 
5-32, 2001. 

[9] P. Domingos, “MetaCost: a general method for making classifiers 
cost-sensitive,” in Proc. of the Fifth ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, pp. 155-164, 
August 15-18, 1999. 

[10] W. Fan, S. J. Stolfo, J. Zhang, P. K. Chan, “AdaCost: 
Misclassification Cost-Sensitive Boosting,” in Proc. of the Sixteenth 
International Conference on Machine Learning, pp. 97-105, June 27-
30, 1999. 

[11] H. Masnadi-Shirazi, N. Vasconcelos, “Asymmetric Boosting,” in 
Proc. of the Twenty-Fourth International Conference on Machine 
Learning, pp. 609-619, 2007. 

[12] B. E. Boser, I. Guyon, V. Vapnik, “A training algorithm for optimal 
margin classiers,” In Proc. of the Fifth Annual Workshop on 
Computational Learning Theory, pp. 144-152, 1992. 

[13] C. Cortes, V. Vapnik, “Support-vector network,” Machine Learning, 
Vol. 20, pp. 273-297, 1995. 

[14] I. Guyon, B. Boser, and V. Vapnik, “Automatic capacity tuning of 
very large VC-dimension classifiers,” Advances in Neural Information 
Processing Systems 5, pp. 147-155, 1993. 

[15] T. Fawcett, “An Introduction to ROC Analysis,” Pattern Recognition 
Letters, 27, pp. 861-874, 2006. 

[16] R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy 
Estimation and Model Selection,” in Proc. of the Fourteenth 
International Joint Conference on Artificial Intelligence, 2, 12, pp. 
1137-1143, 1995. 

[17] J. A. Nelder, R. Mead, “A simplex method for function 
minimization,” Computer Journal, Vol. 7, pp. 308-313, 1965. 

[18] C. C. Chang and C. J. Lin, LIBSVM: a library for support vector 
machines, 2001, Software: http://www.csie.ntu.edu.tw/~cjlin/libsvm. 

[19] C. Drummond and R. Holte, “Explicitly Representing Expected Cost: 
An Alternative to ROC Representation”, in Proc. of the Sixth ACM 
SIGKDD International Conference on Knowledge Discovery and Data 
Mining, 2000. 

Table 1 – Runtimes for the optimization and training of RS-SVC and CS-
RS-SVC ensembles, along with their relative reduction when constrained 
dimensionality (d = 2) is used. All systems were trained on a dual-core 
Intel 6600 2.4 GHz processor w/ 4GB RAM. 

Parameter 

Optimization Time 

(hours)

Ensemble 

Training 

Time (hours)

Total 

Time 

(hours)

Total 

Relative 

Reduction

RS-SVC 303.84 5.75 309.59 N/A

CS-RS-SVC 360.00 4.25 364.25 N/A

RS-SVC d=2 41.90 7.25 49.15 84.1%

CS-RS-SVC d=2 59.29 6.40 65.69 82.0%


